当前位置: 首页 > news >正文

好看网站的浏览器女生学计算机哪个专业简单

好看网站的浏览器,女生学计算机哪个专业简单,东莞市城乡建设规划局官网,自建网站代理服务器1.简述 linprog函数主要用来求线型规划中的最小值问题#xff08;最大值的镜像问题#xff0c;求最大值只需要加个“-”#xff09; 2. 算法结构及使用方法 针对约束条件为Axb或Ax≤b的问题 2.1 linprog函数 xlinprog(f,A,b) xlinprog(f,A,b,Aeq,beq) xlinprog(f,A,b,Aeq,…1.简述 linprog函数主要用来求线型规划中的最小值问题最大值的镜像问题求最大值只需要加个“-” 2. 算法结构及使用方法 针对约束条件为Axb或Ax≤b的问题 2.1 linprog函数 xlinprog(f,A,b) xlinprog(f,A,b,Aeq,beq) xlinprog(f,A,b,Aeq,beq,lb,ub) xlinprog(f,A,b,Aeq,beq,lb,ub,x0) 2.2 参数简介 f目标函数 A不等式约束条件矩阵 b对应不等式右侧的矩阵 Aeq等式约束条件矩阵 beq不等式右侧的矩阵 Aeq等式约束条件矩阵 beq对应等式右侧的矩阵 lbx的下界 ubx的上界 x0设置初始点x0这个选择项只是对medium-scale算法有效。默认的large-scale算法和简单的算法忽略任何初始点。一般用不到 2.3 常用linprog函数及用法举例 linprog函数常用形式为 xlinprog(f,A,b,Aep,beq,lb,ub); 例子  学习目标有约束条件多元变量函数最小值  适合  计划生产盈利最大   的模式求解 最大值解法可转化为求解最小值算法非常容易 求最大值转化为求最小值  f70*x1120*x2  的最大值当然x1,x2是有约束的。     转化为求  f-(70*x1120*x2)  的最小值。 约束条件9*x14*x23600;4*x15*x22000;3*x110*x23000;-x1,-x2 2.代码 主函数 clc clear                f[-70 -120];        A[9 4;4 5;3 10];        B[3600;2000;3000];        Aeq[];  Beq[];        lb[0 0];ub[inf inf];         x0[1 1];        optionsoptimset(display,iter,Tolx,1e-8); [x,f,exitflag]linprog(f,A,B,Aeq,Beq,lb,ub,x0,options)      %[xmincon,fval,exitflag,output] fmincon((x)-(70*x(1)120*x(2)),x0,A,B,Aeq,Beq,lb,ub,[],options)   子函数 function [x,fval,exitflag,output,lambda]linprog(f,A,B,Aeq,Beq,lb,ub,x0,options) %LINPROG Linear programming. %   X LINPROG(f,A,b) attempts to solve the linear programming problem: % %            min f*x    subject to:   A*x b %             x % %   X LINPROG(f,A,b,Aeq,beq) solves the problem above while additionally %   satisfying the equality constraints Aeq*x beq. (Set A[] and B[] if %   no inequalities exist.) % %   X LINPROG(f,A,b,Aeq,beq,LB,UB) defines a set of lower and upper %   bounds on the design variables, X, so that the solution is in %   the range LB X UB. Use empty matrices for LB and UB %   if no bounds exist. Set LB(i) -Inf if X(i) is unbounded below; %   set UB(i) Inf if X(i) is unbounded above. % %   X LINPROG(f,A,b,Aeq,beq,LB,UB,X0) sets the starting point to X0. This %   option is only available with the active-set algorithm. The default %   interior point algorithm will ignore any non-empty starting point. % %   X LINPROG(PROBLEM) finds the minimum for PROBLEM. PROBLEM is a %   structure with the vector f in PROBLEM.f, the linear inequality %   constraints in PROBLEM.Aineq and PROBLEM.bineq, the linear equality %   constraints in PROBLEM.Aeq and PROBLEM.beq, the lower bounds in %   PROBLEM.lb, the upper bounds in  PROBLEM.ub, the start point %   in PROBLEM.x0, the options structure in PROBLEM.options, and solver %   name linprog in PROBLEM.solver. Use this syntax to solve at the %   command line a problem exported from OPTIMTOOL. % %   [X,FVAL] LINPROG(f,A,b) returns the value of the objective function %   at X: FVAL f*X. % %   [X,FVAL,EXITFLAG] LINPROG(f,A,b) returns an EXITFLAG that describes %   the exit condition. Possible values of EXITFLAG and the corresponding %   exit conditions are % %     3  LINPROG converged to a solution X with poor constraint feasibility. %     1  LINPROG converged to a solution X. %     0  Maximum number of iterations reached. %    -2  No feasible point found. %    -3  Problem is unbounded. %    -4  NaN value encountered during execution of algorithm. %    -5  Both primal and dual problems are infeasible. %    -7  Magnitude of search direction became too small; no further %         progress can be made. The problem is ill-posed or badly %         conditioned. %    -9  LINPROG lost feasibility probably due to ill-conditioned matrix. % %   [X,FVAL,EXITFLAG,OUTPUT] LINPROG(f,A,b) returns a structure OUTPUT %   with the number of iterations taken in OUTPUT.iterations, maximum of %   constraint violations in OUTPUT.constrviolation, the type of %   algorithm used in OUTPUT.algorithm, the number of conjugate gradient %   iterations in OUTPUT.cgiterations ( 0, included for backward %   compatibility), and the exit message in OUTPUT.message. % %   [X,FVAL,EXITFLAG,OUTPUT,LAMBDA] LINPROG(f,A,b) returns the set of %   Lagrangian multipliers LAMBDA, at the solution: LAMBDA.ineqlin for the %   linear inequalities A, LAMBDA.eqlin for the linear equalities Aeq, %   LAMBDA.lower for LB, and LAMBDA.upper for UB. % %   NOTE: the interior-point (the default) algorithm of LINPROG uses a %         primal-dual method. Both the primal problem and the dual problem %         must be feasible for convergence. Infeasibility messages of %         either the primal or dual, or both, are given as appropriate. The %         primal problem in standard form is %              min f*x such that A*x b, x 0. %         The dual problem is %              max b*y such that A*y s f, s 0. % %   See also QUADPROG. %   Copyright 1990-2018 The MathWorks, Inc. % If just defaults passed in, return the default options in X % Default MaxIter, TolCon and TolFun is set to [] because its value depends % on the algorithm. defaultopt struct( ...     Algorithm,dual-simplex, ...     Diagnostics,off, ...     Display,final, ...     LargeScale,on, ...     MaxIter,[], ...     MaxTime, Inf, ...     Preprocess,basic, ...     TolCon,[],...     TolFun,[]); if nargin1 nargout 1 strcmpi(f,defaults)    x defaultopt;    return end % Handle missing arguments if nargin 9     options [];     % Check if x0 was omitted and options were passed instead     if nargin 8         if isa(x0, struct) || isa(x0, optim.options.SolverOptions)             options x0;             x0 [];         end     else         x0 [];         if nargin 7             ub [];             if nargin 6                 lb [];                 if nargin 5                     Beq [];                     if nargin 4                         Aeq [];                     end                 end             end         end     end end % Detect problem structure input problemInput false; if nargin 1     if isa(f,struct)         problemInput true;         [f,A,B,Aeq,Beq,lb,ub,x0,options] separateOptimStruct(f);     else % Single input and non-structure.         error(message(optim:linprog:InputArg));     end end % No options passed. Set options directly to defaultopt after allDefaultOpts isempty(options); % Prepare the options for the solver options prepareOptionsForSolver(options, linprog); if nargin 3 ~problemInput   error(message(optim:linprog:NotEnoughInputs)) end % Define algorithm strings thisFcn   linprog; algIP     interior-point-legacy; algDSX   dual-simplex; algIP15b interior-point; % Check for non-double inputs msg isoptimargdbl(upper(thisFcn), {f,A,b,Aeq,beq,LB,UB, X0}, ...                                       f,  A,  B,  Aeq,  Beq,  lb,  ub,   x0); if ~isempty(msg)     error(optim:linprog:NonDoubleInput,msg); end % After processing options for optionFeedback, etc., set options to default % if no options were passed. if allDefaultOpts     % Options are all default     options defaultopt; end if nargout 3    computeConstrViolation true;    computeFirstOrderOpt true;    % Lagrange multipliers are needed to compute first-order optimality    computeLambda true; else    computeConstrViolation false;    computeFirstOrderOpt false;    computeLambda false; end % Algorithm check: % If Algorithm is empty, it is set to its default value. algIsEmpty ~isfield(options,Algorithm) || isempty(options.Algorithm); if ~algIsEmpty     Algorithm optimget(options,Algorithm,defaultopt,fast,allDefaultOpts);     OUTPUT.algorithm Algorithm;     % Make sure the algorithm choice is valid     if ~any(strcmp({algIP; algDSX; algIP15b},Algorithm))         error(message(optim:linprog:InvalidAlgorithm));     end else     Algorithm algDSX;     OUTPUT.algorithm Algorithm; end % Option LargeScale off is ignored largescaleOn strcmpi(optimget(options,LargeScale,defaultopt,fast,allDefaultOpts),on); if ~largescaleOn     [linkTag, endLinkTag] linkToAlgDefaultChangeCsh(linprog_warn_largescale);     warning(message(optim:linprog:AlgOptsConflict, Algorithm, linkTag, endLinkTag)); end % Options setup diagnostics strcmpi(optimget(options,Diagnostics,defaultopt,fast,allDefaultOpts),on); switch optimget(options,Display,defaultopt,fast,allDefaultOpts)     case {final,final-detailed}         verbosity 1;     case {off,none}         verbosity 0;     case {iter,iter-detailed}         verbosity 2;     case {testing}         verbosity 3;     otherwise         verbosity 1; end % Set the constraints up: defaults and check size [nineqcstr,nvarsineq] size(A); [neqcstr,nvarseq] size(Aeq); nvars max([length(f),nvarsineq,nvarseq]); % In case A is empty if nvars 0     % The problem is empty possibly due to some error in input.     error(message(optim:linprog:EmptyProblem)); end if isempty(f), fzeros(nvars,1); end if isempty(A), Azeros(0,nvars); end if isempty(B), Bzeros(0,1); end if isempty(Aeq), Aeqzeros(0,nvars); end if isempty(Beq), Beqzeros(0,1); end % Set to column vectors f f(:); B B(:); Beq Beq(:); if ~isequal(length(B),nineqcstr)     error(message(optim:linprog:SizeMismatchRowsOfA)); elseif ~isequal(length(Beq),neqcstr)     error(message(optim:linprog:SizeMismatchRowsOfAeq)); elseif ~isequal(length(f),nvarsineq) ~isempty(A)     error(message(optim:linprog:SizeMismatchColsOfA)); elseif ~isequal(length(f),nvarseq) ~isempty(Aeq)     error(message(optim:linprog:SizeMismatchColsOfAeq)); end [x0,lb,ub,msg] checkbounds(x0,lb,ub,nvars); if ~isempty(msg)    exitflag -2;    x x0; fval []; lambda [];    output.iterations 0;    output.constrviolation [];    output.firstorderopt [];    output.algorithm ; % not known at this stage    output.cgiterations [];    output.message msg;    if verbosity 0       disp(msg)    end    return end if diagnostics    % Do diagnostics on information so far    gradflag []; hessflag []; constflag false; gradconstflag false;    non_eq0;non_ineq0; lin_eqsize(Aeq,1); lin_ineqsize(A,1); XOUTones(nvars,1);    funfcn{1} []; confcn{1}[];    diagnose(linprog,OUTPUT,gradflag,hessflag,constflag,gradconstflag,...       XOUT,non_eq,non_ineq,lin_eq,lin_ineq,lb,ub,funfcn,confcn); end % Throw warning that x0 is ignored (true for all algorithms) if ~isempty(x0) verbosity 0     fprintf(getString(message(optim:linprog:IgnoreX0,Algorithm))); end if strcmpi(Algorithm,algIP)     % Set the default values of TolFun and MaxIter for this algorithm     defaultopt.TolFun 1e-8;     defaultopt.MaxIter 85;     [x,fval,lambda,exitflag,output] lipsol(f,A,B,Aeq,Beq,lb,ub,options,defaultopt,computeLambda); elseif strcmpi(Algorithm,algDSX) || strcmpi(Algorithm,algIP15b) % Create linprog options object     algoptions optimoptions(linprog, Algorithm, Algorithm); % Set some algorithm specific options     if isfield(options, InternalOptions)         algoptions setInternalOptions(algoptions, options.InternalOptions);     end thisMaxIter optimget(options,MaxIter,defaultopt,fast,allDefaultOpts);     if strcmpi(Algorithm,algIP15b)         if ischar(thisMaxIter)             error(message(optim:linprog:InvalidMaxIter));         end     end     if strcmpi(Algorithm,algDSX)         algoptions.Preprocess optimget(options,Preprocess,defaultopt,fast,allDefaultOpts);         algoptions.MaxTime optimget(options,MaxTime,defaultopt,fast,allDefaultOpts);         if ischar(thisMaxIter) ...                 ~strcmpi(thisMaxIter,10*(numberofequalitiesnumberofinequalitiesnumberofvariables))             error(message(optim:linprog:InvalidMaxIter));         end     end % Set options common to dual-simplex and interior-point-r2015b     algoptions.Diagnostics optimget(options,Diagnostics,defaultopt,fast,allDefaultOpts);     algoptions.Display optimget(options,Display,defaultopt,fast,allDefaultOpts);     thisTolCon optimget(options,TolCon,defaultopt,fast,allDefaultOpts);     if ~isempty(thisTolCon)         algoptions.TolCon thisTolCon;     end     thisTolFun optimget(options,TolFun,defaultopt,fast,allDefaultOpts);     if ~isempty(thisTolFun)         algoptions.TolFun thisTolFun;     end     if ~isempty(thisMaxIter) ~ischar(thisMaxIter)         % At this point, thisMaxIter is either         % * a double that we can set in the options object or         % * the default string, which we do not have to set as algoptions         % is constructed with MaxIter at its default value         algoptions.MaxIter thisMaxIter;     end % Create a problem structure. Individually creating each field is quicker     % than one call to struct     problem.f f;     problem.Aineq A;     problem.bineq B;     problem.Aeq Aeq;     problem.beq Beq;     problem.lb lb;     problem.ub ub;     problem.options algoptions;     problem.solver linprog; % Create the algorithm from the options.     algorithm createAlgorithm(problem.options); % Check that we can run the problem.     try         problem checkRun(algorithm, problem, linprog);     catch ME         throw(ME);     end % Run the algorithm     [x, fval, exitflag, output, lambda] run(algorithm, problem); % If exitflag is {NaN, aString}, this means an internal error has been     % thrown. The internal exit code is held in exitflag{2}.     if iscell(exitflag) isnan(exitflag{1})         handleInternalError(exitflag{2}, linprog);     end end output.algorithm Algorithm; % Compute constraint violation when x is not empty (interior-point/simplex presolve % can return empty x). if computeConstrViolation ~isempty(x)     output.constrviolation max([0; norm(Aeq*x-Beq, inf); (lb-x); (x-ub); (A*x-B)]); else     output.constrviolation []; end % Compute first order optimality if needed. This information does not come % from either qpsub, lipsol, or simplex. if exitflag ~ -9 computeFirstOrderOpt ~isempty(lambda)     output.firstorderopt computeKKTErrorForQPLP([],f,A,B,Aeq,Beq,lb,ub,lambda,x); else     output.firstorderopt []; end 3.运行结果
http://www.lebaoying.cn/news/69817.html

相关文章:

  • 【网站建设网站建设项目验收付款
  • 网站建设培训会讲话wordpress 插件商城
  • 教育类php开源网站5G网站建设
  • 湘潭做网站 要到磐石网络WordPress注册验证修改注册
  • 做网站运营有趣吗成都推广公司联系电话
  • 盐城外贸网站建设注册公司网站怎么做
  • dede自定义网站地图教育网站怎么做弹窗的
  • 网上服装商城网站建设方案策划书网站优化北京
  • 相亲网站怎么建设品牌推广的方式有哪些
  • 专业专题网站建设wordpress 主页图片
  • 做汽车拆解视频网站商城源码购买
  • 网站建设工具开源如何布置网站
  • 企业产品做哪个网站推广好广州建站网络推广公司
  • 刘家窑网站建设公司网上商城网站开发与建立的意义
  • 廉洁长沙网站莱芜在线论坛莱芜话题秦立奉
  • 素材网站排行榜前十名网站需要写哪些内容
  • 网站建设pqiw淘宝客网站建好了没有数据库
  • 教育机构招聘网站建设58好项目网
  • 阿里云建设网站要什么做我女朋网站源码
  • 鹤壁建设网站推广渠道广州建设交易中心官网
  • 上海网站建设报价本科自考科目有哪些
  • 大同建设银行保安招聘网站考拉seo
  • 档案网站建设文献综述团购网站 方案
  • 动力论坛源码网站后台地址是什么中国科技成就2019
  • 网站名字重复科技与人文
  • 怎么通过所有的网站推广广告网站new图标
  • 做奢侈品的网站创业找项目
  • 网站管理后台源码南通建设工程网
  • 上海建设电动车官方网站网站后台是怎样制作的
  • 新浪网 网站建设短视频推广公司