当前位置: 首页 > news >正文

达州市网站建设_网站建设公司_JavaScript_seo优化

做网站创业,如何查询网站服务器地址,杭州网站建设服务公司,湖南发展最新消息公告Python Anaconda 的安装等请参阅#xff1a; Python开源项目CodeFormer——人脸重建#xff08;Face Restoration#xff09;#xff0c;模糊清晰、划痕修复及黑白上色的实践https://blog.csdn.net/beijinghorn/article/details/134334021 VQFR也是 腾讯 LAB 的作品…Python Anaconda 的安装等请参阅 Python开源项目CodeFormer——人脸重建Face Restoration模糊清晰、划痕修复及黑白上色的实践https://blog.csdn.net/beijinghorn/article/details/134334021 VQFR也是 腾讯 LAB 的作品比较忠于德国 VQGAN 思想的速度虽然慢一点效果凑合。用于修正国人脸效果一般。代码比较精炼笔者用 Python2Sharp 转为 C/C# 复现速度与效果尚可。 6 VQFR (ECCV 2022 Oral) https://github.com/TencentARC/VQFR https://github.com/TencentARC/VQFR/releases  模型下载 download Open issue Closed issue LICENSE google colab logo Colab Demo for VQFR https://colab.research.google.com/drive/1Nd_PUrHaYmeEAOF5f_Zi0VuOxlJ62gLr?uspsharing Online demo: Replicate.ai (may need to sign in, return the whole image) https://replicate.com/tencentarc/vqfr 6.1 进化史Updates 2022.10.16 Clean research codes Update VQFR-v2. In this version, we emphasize the restoration quality of the texture branch and balance fidelity with user control. google colab logo Support enhancing non-face regions (background) with Real-ESRGAN. The Colab Demo of VQFR is created. The training/inference codes and pretrained models in paper are released. This paper aims at investigating the potential and limitation of Vector-Quantized (VQ) dictionary for blind face restoration. We propose a new framework VQFR – incoporating the Vector-Quantized Dictionary and the Parallel Decoder. Compare with previous arts, VQFR produces more realistic facial details and keep the comparable fidelity. VQFR: Blind Face Restoration with Vector-Quantized Dictionary and Parallel Decoder [Paper]   [Project Page]   [Video]   [B站]   [Poster]   [Slides] Yuchao Gu, Xintao Wang, Liangbin Xie, Chao Dong, Gen Li, Ying Shan, Ming-Ming Cheng Nankai University; Tencent ARC Lab; Tencent Online Video; Shanghai AI Laboratory; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Release  去这里下载模型。 6.2 依赖项与安装Dependencies and Installation 6.2.1 依赖项Dependencies Python 3.7 (Recommend to use Anaconda or Miniconda) PyTorch 1.7 Option: NVIDIA GPU CUDA Option: Linux 6.2.2 安装Installation 6.2.2.1 Clone repo git clone https://github.com/TencentARC/VQFR.git cd VQFR 6.2.2.2 Install dependent packages # Build VQFR with extension pip install -r requirements.txt VQFR_EXTTrue python setup.py develop # Following packages are required to run demo.py # Install basicsr - https://github.com/xinntao/BasicSR pip install basicsr # Install facexlib - https://github.com/xinntao/facexlib # We use face detection and face restoration helper in the facexlib package pip install facexlib # If you want to enhance the background (non-face) regions with Real-ESRGAN, # you also need to install the realesrgan package pip install realesrgan 6.3 快速指南Quick Inference Download pre-trained VQFRv1/v2 models [Google Drive]. https://drive.google.com/drive/folders/1lczKYEbARwe27FJlKoFdng7UnffGDjO2?uspsharing https://github.com/TencentARC/VQFR/releases/download/v2.0.0/VQFR_v2.pth https://github.com/TencentARC/VQFR/releases/download/v2.0.0/VQ_Codebook_FFHQ512_v2.pth Inference # for real-world image python demo.py -i inputs/whole_imgs -o results -v 2.0 -s 2 -f 0.1 # for cropped face python demo.py -i inputs/cropped_faces/ -o results -v 2.0 -s 1 -f 0.1 --aligned Usage: python demo.py -i inputs/whole_imgs -o results -v 2.0 -s 2 -f 0.1 [options]... -h                   show this help   -i input             Input image or folder. Default: inputs/whole_imgs   -o output            Output folder. Default: results   -v version           VQFR model version. Option: 1.0. Default: 1.0   -f fidelity_ratio    VQFRv2 model supports user control fidelity ratio, range from [0,1]. 0 for the best quality and 1 for the best fidelity. Default: 0   -s upscale           The final upsampling scale of the image. Default: 2   -bg_upsampler        background upsampler. Default: realesrgan   -bg_tile             Tile size for background sampler, 0 for no tile during testing. Default: 400   -suffix              Suffix of the restored faces   -only_center_face    Only restore the center face   -aligned             Input are aligned faces   -ext                 Image extension. Options: auto | jpg | png, auto means using the same extension as inputs. Default: auto 6.4 自我训练Training We provide the training codes for VQFR (used in our paper). Dataset preparation: FFHQ https://github.com/NVlabs/ffhq-dataset Download lpips weights [Google Drive] into experiments/pretrained_models/ https://drive.google.com/drive/folders/1weXfn5mdIwp2dEfDbNNUkauQgo8fx-2D?uspsharing Codebook Training Pre-train VQ codebook on FFHQ datasets. python -m torch.distributed.launch --nproc_per_node8 --master_port2022 vqfr/train.py -opt options/train/VQGAN/train_vqgan_v1_B16_800K.yml --launcher pytorch Or download our pretrained VQ codebook Google Drive and put them in the experiments/pretrained_models folder. https://drive.google.com/drive/folders/1lczKYEbARwe27FJlKoFdng7UnffGDjO2?uspsharing Restoration Training Modify the configuration file options/train/VQFR/train_vqfr_v1_B16_200K.yml accordingly. Training python -m torch.distributed.launch --nproc_per_node8 --master_port2022 vqfr/train.py -opt options/train/VQFR/train_vqfr_v1_B16_200K.yml --launcher pytorch 6.5 评估Evaluation We evaluate VQFR on one synthetic dataset CelebA-Test, and three real-world datasets LFW-Test, CelebChild and Webphoto-Test. For reproduce our evaluation results, you need to perform the following steps: 1 Download testing datasets (or VQFR results) by the following links: Name    Datasets    Short Description    Download    VQFR Results Testing Datasets    CelebA-Test(LQ/HQ)    3000 (LQ, HQ) synthetic images for testing    Google Drive    Google Drive LFW-Test(LQ)    1711 real-world images for testing CelebChild(LQ)    180 real-world images for testing Webphoto-Test(LQ)    469 real-world images for testing 2 Install related package and download pretrained models for different metrics: # LPIPS     pip install lpips # Deg.     cd metric_paper/     git clone https://github.com/ronghuaiyang/arcface-pytorch.git     mv arcface-pytorch/ arcface/     rm arcface/config/__init__.py arcface/models/__init__.py # put pretrained models of different metrics to experiments/pretrained_models/metric_weights/ Metrics    Pretrained Weights    Download FID    inception_FFHQ_512.pth    Google Drive Deg    resnet18_110.pth LMD    alignment_WFLW_4HG.pth Generate restoration results: Specify the dataset_lq/dataset_gt to the testing dataset root in test_vqfr_v1.yml. Then run the following command: python vqfr/test.py -opt options/test/VQFR/test_vqfr_v1.yml Run evaluation:     # LPIPS|PSNR/SSIM|LMD|Deg.     python metric_paper/[calculate_lpips.py|calculate_psnr_ssim.py|calculate_landmark_distance.py|calculate_cos_dist.py]     -restored_folder folder_to_results -gt_folder folder_to_gt # FID|NIQE     python metric_paper/[calculate_fid_folder.py|calculate_niqe.py] -restored_folder folder_to_results 6.6 权利License VQFR is released under Apache License Version 2.0. 6.7 知识Acknowledgement Thanks to the following open-source projects: Taming-transformers https://github.com/CompVis/taming-transformers GFPGAN https://github.com/TencentARC/GFPGAN DistSup https://github.com/distsup/DistSup 6.8 引用Citation inproceedings{gu2022vqfr,   title{VQFR: Blind Face Restoration with Vector-Quantized Dictionary and Parallel Decoder},   author{Gu, Yuchao and Wang, Xintao and Xie, Liangbin and Dong, Chao and Li, Gen and Shan, Ying and Cheng, Ming-Ming},   year{2022},   booktitle{ECCV} } 6.9 联系Contact If you have any question, please email yuchaogu9710gmail.com.
http://www.lebaoying.cn/news/86717.html

相关文章:

  • 国内可访问的海外网站和应用平面设计主要是干嘛的
  • 咸宁网站建设多少钱怎样解析网站域名
  • 用订制音乐网站做的音乐算原创吗手机qq怎么用wordpress
  • 推荐网站建设案例专业做鞋子网站有哪些
  • 网站本科企业网站建设专家
  • 手机网站 cms自豪地采用wordpress
  • 网站开发的实训内容天翼云免费服务器
  • 宜黄县建设局网站品牌推广软文案例
  • 服务好的网站制作网站建设const是什么意思
  • 泉州电商网站建设牛商网网站建设
  • 阜宁网站建设企业文化范文
  • 如何远程连接 网站 数据库佛山seo优化评价
  • 潍坊网站建设怎样营销网站建设多钱
  • 大连做网站排名门户网站开发视频
  • etsy网站引擎优化搜索
  • 做卡贴质量好的网站做的网站为什么手机上搜不到
  • 学校网站的建设与应用wordpress的FTP帐号
  • 企业网站的功能模块大学生创新创业大赛案例
  • 建设部网站上标准合同简单响应式网站
  • 昆山做网站的kamese做交互网站
  • 怎样推广自己做的网站株洲网站制作公司有哪些
  • 做景观要知道哪些网站制作高端网站公司排名
  • 南昌哪家网站建设最好淘宝电商需要投资多少钱
  • 微站官网怎样做门户网站
  • 传媒公司网站建设思路wordpress joomla 比较
  • 连云港公司网站优化服务找个做微商授权网站
  • 济南做网站比较好的公司知道吗石家庄哪里有做外贸网站的公司
  • 宝安网站改版如何自建网站接广告
  • 佛山做网站的公司哪家好六安同城网
  • wordpress外贸建站主题10大免费软件下载