松原市建设局网站,软件开发工程师待遇怎么样,软件开发培训学校哪家好,装修网站排行榜前十名有哪些概要
通常线程池是同质的#xff0c;每个线程都可以执行任意的task#xff08;每个线程中的task顺序执行#xff09;#xff0c;如下图所示#xff1a; 但本文所介绍的线程和task之间有绑定关系#xff0c;如A task只能跑在A thread上#xff08;因此称为异构线程池每个线程都可以执行任意的task每个线程中的task顺序执行如下图所示 但本文所介绍的线程和task之间有绑定关系如A task只能跑在A thread上因此称为异构线程池每个线程的功能是有所区别的如下图所示 接口设计
TThreadPool接口设计
// 线程池
class TThreadPool
{
public:TThreadPool() {}TThreadPool(const TThreadPool) delete;TThreadPool operator(const TThreadPool other) delete;~TThreadPool();bool add_thread(std::string name); // add one thread into poolbool delete_thread(std::string name); // remove one thread from poolTThread* get_thread_by_name(std::string threadname); // get the thread by name, dont delete return object by yourselfbool append_task_by_thread(const std::string threadname, const std::functionvoid() task); // add task to pointed threadprivate:std::mutex m_mutex;std::mapstd::string, TThread* m_threads;
}; TThreadPool类的主要功能是管理创建的线程TThread它是线程的具体实现它提供了增加/删除线程的接口同时给每个线程打上了标签name。
TThread接口设计
// 对std::thread的封装类
class TThread
{
public:TThread(std::string name);TThread(const TThread other) delete;TThread operator(const TThread other) delete;~TThread();bool push_task(const std::functionvoid() task); // one add taskstd::thread::id get_thread_id(); // for log purposevoid set_max_task_size(int s); // avoid thread too busyint get_task_size(); // get current task numberprivate:void work(); // real work threadvoid notify(); // notify work thread to quit
private:std::string s_name;std::atomic_bool b_running;std::thread* p_thread;std::mutex m_mutex;std::queuestd::functionvoid() m_tasks;std::condition_variable m_cond;std::atomicint i_maxTaskSize;
};
TThread类的主要功能是分配任务push_task函数和处理任务work函数。
代码实现
TThreadPool类
TThreadPool::~TThreadPool() {std::unique_lockstd::mutex lk(m_mutex);for(auto iterm_threads.begin(); iter!m_threads.end(); iter) {if(iter-second ! nullptr) {delete iter-second;}}m_threads.clear();
}bool TThreadPool::add_thread(std::string name) {std::unique_lockstd::mutex lk(m_mutex);if(m_threads.count(name)) {return false;}auto tt new TThread(name);if(tt nullptr) {return false;}m_threads[name] tt;return true;
}bool TThreadPool::delete_thread(std::string name) {std::unique_lockstd::mutex lk(m_mutex);if(m_threads.count(name) 0) {return false;}delete m_threads[name];m_threads.erase(name);return true;
}TThread* TThreadPool::get_thread_by_name(std::string threadname) {std::unique_lockstd::mutex lk(m_mutex);if(m_threads.count(threadname) 0) {return nullptr;}return m_threads[threadname];
}bool TThreadPool::append_task_by_thread(const std::string threadname, const std::functionvoid() task)
{std::unique_lockstd::mutex lk(m_mutex);if(m_threads.count(threadname) 0) {return false;}auto tt m_threads[threadname];return tt-push_task(task);
}TThread类
const int MAX_TASK_SIZE 100; // max task size in one threadTThread::TThread(std::string name) : s_name(name), b_running(true), i_maxTaskSize(MAX_TASK_SIZE) {p_thread new std::thread(TThread::work, this);
}TThread::~TThread() {notify(); // notify work thread quitif(p_thread-joinable()) {p_thread-join();}delete p_thread;
}bool TThread::push_task(const std::functionvoid() task) {std::unique_lockstd::mutex lk(m_mutex);if(!b_running) {return false;}if(m_tasks.size() i_maxTaskSize.load()) {return false;}m_tasks.push(task);m_cond.notify_one();return true;
}std::thread::id TThread::get_thread_id() {return p_thread-get_id();
}void TThread::set_max_task_size(int s) {if(s 0) {return;}i_maxTaskSize.store(s);
}void TThread::work() {std::cout std::this_thread::get_id() begin work thread std::endl;while (b_running) { // quit even tasks remainingstd::functionvoid() task;{std::unique_lockstd::mutex lk(m_mutex);if (!m_tasks.empty()) {task m_tasks.front();m_tasks.pop();} else if (b_running m_tasks.empty()) {m_cond.wait(lk);}}if (task)task(); // do the task}std::cout std::this_thread::get_id() end work thread std::endl;
}void TThread::notify() {std::unique_lockstd::mutex lk(m_mutex);b_running false;m_cond.notify_one(); // mutex will be released here, therefore another thread would lock it afterward
}int TThread::get_task_size() {std::unique_lockstd::mutex lk(m_mutex);return m_tasks.size();
}
使用方式
有两种方式可以调用对应的线程
公共代码
void func1(int i) {std::cout into func1: i std::endl;sleep(2); // simulate real work
}TThreadPool thread_pool;thread_pool.add_thread(vdr); // 启动vdr线程thread_pool.add_thread(xgb); // 启动xgb线程
方式一、(先获取线程对象然后对该线程对象添加任务)
auto tt thread_pool.getThreadByName(vdr);
tt-push_task(std::bind(func1, 2));
tt-push_task(std::bind(func1, 5));
方式二、直接通过线程池给对应线程添加任务
thread_pool.append_task_by_thread(vdr, std::bind(func1, 2));
thread_pool.append_task_by_thread(vdr, std::bind(func1, 5));
注
task是std::functionvoid()类型上面的demo是普通函数实现的真实场景应该是类函数实现如下
class A {
public:void func(std::string str) {std::cout into A func: str std::endl;}
};A a;thread_pool.append_task_by_thread(vdr, std::bind(A::func, a, 2));thread_pool.append_task_by_thread(vdr, std::bind(A::func, a, 5));